openMSX
VLM5030.cc
Go to the documentation of this file.
1 /*
2  vlm5030.c
3 
4  VLM5030 emulator
5 
6  Written by Tatsuyuki Satoh
7  Based on TMS5220 simulator (tms5220.c)
8 
9  note:
10  memory read cycle(==sampling rate) = 122.9u(440clock)
11  interpolator (LC8109 = 2.5ms) = 20 * samples(125us)
12  frame time (20ms) = 4 * interpolator
13  9bit DAC is composed of 5bit Physical and 3bitPWM.
14 
15  todo:
16  Noise Generator circuit without 'rand()' function.
17 
18 ----------- command format (Analytical result) ----------
19 
20 1)end of speech (8bit)
21 :00000011:
22 
23 2)silent some frame (8bit)
24 :????SS01:
25 
26 SS : number of silent frames
27  00 = 2 frame
28  01 = 4 frame
29  10 = 6 frame
30  11 = 8 frame
31 
32 3)-speech frame (48bit)
33 function: 6th : 5th : 4th : 3rd : 2nd : 1st :
34 end : --- : --- : --- : --- : --- :00000011:
35 silent : --- : --- : --- : --- : --- :0000SS01:
36 speech :11111122:22233334:44455566:67778889:99AAAEEE:EEPPPPP0:
37 
38 EEEEE : energy : volume 0=off,0x1f=max
39 PPPPP : pitch : 0=noize , 1=fast,0x1f=slow
40 111111 : K1 : 48=off
41 22222 : K2 : 0=off,1=+min,0x0f=+max,0x10=off,0x11=+max,0x1f=-min
42  : 16 == special function??
43 3333 : K3 : 0=off,1=+min,0x07=+max,0x08=-max,0x0f=-min
44 4444 : K4 :
45 555 : K5 : 0=off,1=+min,0x03=+max,0x04=-max,0x07=-min
46 666 : K6 :
47 777 : K7 :
48 888 : K8 :
49 999 : K9 :
50 AAA : K10 :
51 
52  ---------- chirp table information ----------
53 
54 DAC PWM cycle == 88system clock , (11clock x 8 pattern) = 40.6KHz
55 one chirp == 5 x PWM cycle == 440systemclock(8,136Hz)
56 
57 chirp 0 : volume 10- 8 : with filter
58 chirp 1 : volume 8- 6 : with filter
59 chirp 2 : volume 6- 4 : with filter
60 chirp 3 : volume 4 : no filter ??
61 chirp 4- 5: volume 4- 2 : with filter
62 chirp 6-11: volume 2- 0 : with filter
63 chirp 12-..: vokume 0 : silent
64 
65  ---------- digial output information ----------
66  when ME pin = high , some status output to A0..15 pins
67 
68  A0..8 : DAC output value (abs)
69  A9 : DAC sign flag , L=minus,H=Plus
70  A10 : energy reload flag (pitch pulse)
71  A11..15 : unknown
72 
73  [DAC output value(signed 6bit)] = A9 ? A0..8 : -(A0..8)
74 
75 */
76 
77 #include "VLM5030.hh"
78 #include "DeviceConfig.hh"
79 #include "XMLElement.hh"
80 #include "FileOperations.hh"
81 #include "Math.hh"
82 #include "cstd.hh"
83 #include "serialize.hh"
84 #include "random.hh"
85 #include "ranges.hh"
86 #include <cmath>
87 #include <cstring>
88 
89 namespace openmsx {
90 
91 
92 // interpolator per frame
93 constexpr int FR_SIZE = 4;
94 // samples per interpolator
95 constexpr int IP_SIZE_SLOWER = 240 / FR_SIZE;
96 constexpr int IP_SIZE_SLOW = 200 / FR_SIZE;
97 constexpr int IP_SIZE_NORMAL = 160 / FR_SIZE;
98 constexpr int IP_SIZE_FAST = 120 / FR_SIZE;
99 constexpr int IP_SIZE_FASTER = 80 / FR_SIZE;
100 
101 // phase value
102 enum {
110 };
111 
112 // speed parameter
113 // SPC SPB SPA
114 // 1 0 1 more slow (05h) : 42ms (150%) : 60sample
115 // 1 1 x slow (06h,07h) : 34ms (125%) : 50sample
116 // x 0 0 normal (00h,04h) : 25.6ms (100%) : 40samplme
117 // 0 0 1 fast (01h) : 20.2ms (75%) : 30sample
118 // 0 1 x more fast (02h,03h) : 12.2ms (50%) : 20sample
119 constexpr int VLM5030_speed_table[8] =
120 {
122  IP_SIZE_FAST,
127  IP_SIZE_SLOW,
128  IP_SIZE_SLOW
129 };
130 
131 // ROM Tables
132 
133 // This is the energy lookup table
134 
135 // sampled from real chip
136 static word energytable[0x20] =
137 {
138  0, 2, 4, 6, 10, 12, 14, 18, // 0-7
139  22, 26, 30, 34, 38, 44, 48, 54, // 8-15
140  62, 68, 76, 84, 94,102,114,124, // 16-23
141  136,150,164,178,196,214,232,254 // 24-31
142 };
143 
144 // This is the pitch lookup table
145 constexpr byte pitchtable [0x20] =
146 {
147  1, // 0 : random mode
148  22, // 1 : start=22
149  23, 24, 25, 26, 27, 28, 29, 30, // 2- 9 : 1step
150  32, 34, 36, 38, 40, 42, 44, 46, // 10-17 : 2step
151  50, 54, 58, 62, 66, 70, 74, 78, // 18-25 : 4step
152  86, 94, 102,110,118,126 // 26-31 : 8step
153 };
154 
155 constexpr int16_t K1_table[] = {
156  -24898, -25672, -26446, -27091, -27736, -28252, -28768, -29155,
157  -29542, -29929, -30316, -30574, -30832, -30961, -31219, -31348,
158  -31606, -31735, -31864, -31864, -31993, -32122, -32122, -32251,
159  -32251, -32380, -32380, -32380, -32509, -32509, -32509, -32509,
160  24898, 23995, 22963, 21931, 20770, 19480, 18061, 16642,
161  15093, 13416, 11610, 9804, 7998, 6063, 3999, 1935,
162  0, -1935, -3999, -6063, -7998, -9804, -11610, -13416,
163  -15093, -16642, -18061, -19480, -20770, -21931, -22963, -23995
164 };
165 constexpr int16_t K2_table[] = {
166  0, -3096, -6321, -9417, -12513, -15351, -18061, -20770,
167  -23092, -25285, -27220, -28897, -30187, -31348, -32122, -32638,
168  0, 32638, 32122, 31348, 30187, 28897, 27220, 25285,
169  23092, 20770, 18061, 15351, 12513, 9417, 6321, 3096
170 };
171 constexpr int16_t K3_table[] = {
172  0, -3999, -8127, -12255, -16384, -20383, -24511, -28639,
173  32638, 28639, 24511, 20383, 16254, 12255, 8127, 3999
174 };
175 constexpr int16_t K5_table[] = {
176  0, -8127, -16384, -24511, 32638, 24511, 16254, 8127
177 };
178 
179 int VLM5030::getBits(unsigned sbit, unsigned bits)
180 {
181  unsigned offset = address + (sbit / 8);
182  unsigned data = rom[(offset + 0) & address_mask] +
183  rom[(offset + 1) & address_mask] * 256;
184  data >>= (sbit & 7);
185  data &= (0xFF >> (8 - bits));
186  return data;
187 }
188 
189 // get next frame
190 int VLM5030::parseFrame()
191 {
192  // remember previous frame
193  old_energy = new_energy;
194  old_pitch = new_pitch;
195  for (int i = 0; i <= 9; ++i) {
196  old_k[i] = new_k[i];
197  }
198  // command byte check
199  byte cmd = rom[address & address_mask];
200  if (cmd & 0x01) {
201  // extend frame
202  new_energy = new_pitch = 0;
203  ranges::fill(new_k, 0);
204  ++address;
205  if (cmd & 0x02) {
206  // end of speech
207  return 0;
208  } else {
209  // silent frame
210  int nums = ((cmd >> 2) + 1) * 2;
211  return nums * FR_SIZE;
212  }
213  }
214  // pitch
215  new_pitch = (pitchtable[getBits(1, 5)] + pitch_offset) & 0xff;
216  // energy
217  new_energy = energytable[getBits(6, 5)];
218 
219  // 10 K's
220  new_k[9] = K5_table[getBits(11, 3)];
221  new_k[8] = K5_table[getBits(14, 3)];
222  new_k[7] = K5_table[getBits(17, 3)];
223  new_k[6] = K5_table[getBits(20, 3)];
224  new_k[5] = K5_table[getBits(23, 3)];
225  new_k[4] = K5_table[getBits(26, 3)];
226  new_k[3] = K3_table[getBits(29, 4)];
227  new_k[2] = K3_table[getBits(33, 4)];
228  new_k[1] = K2_table[getBits(37, 5)];
229  new_k[0] = K1_table[getBits(42, 6)];
230 
231  address += 6;
232  return FR_SIZE;
233 }
234 
235 // decode and buffering data
236 void VLM5030::generateChannels(float** bufs, unsigned num)
237 {
238  // Single channel device: replace content of bufs[0] (not add to it).
239  if (phase == PH_IDLE) {
240  bufs[0] = nullptr;
241  return;
242  }
243 
244  int buf_count = 0;
245 
246  // running
247  if (phase == PH_RUN || phase == PH_STOP) {
248  // playing speech
249  while (num > 0) {
250  int current_val;
251  // check new interpolator or new frame
252  if (sample_count == 0) {
253  if (phase == PH_STOP) {
254  phase = PH_END;
255  sample_count = 1;
256  goto phase_stop; // continue to end phase
257  }
258  sample_count = frame_size;
259  // interpolator changes
260  if (interp_count == 0) {
261  // change to new frame
262  interp_count = parseFrame(); // with change phase
263  if (interp_count == 0 ) {
264  // end mark found
265  interp_count = FR_SIZE;
266  sample_count = frame_size; // end -> stop time
267  phase = PH_STOP;
268  }
269  // Set old target as new start of frame
270  current_energy = old_energy;
271  current_pitch = old_pitch;
272  for (int i = 0; i <= 9; ++i) {
273  current_k[i] = old_k[i];
274  }
275  // is this a zero energy frame?
276  if (current_energy == 0) {
277  target_energy = 0;
278  target_pitch = current_pitch;
279  for (int i = 0; i <= 9; ++i) {
280  target_k[i] = current_k[i];
281  }
282  } else {
283  // normal frame
284  target_energy = new_energy;
285  target_pitch = new_pitch;
286  for (int i = 0; i <= 9; ++i) {
287  target_k[i] = new_k[i];
288  }
289  }
290  }
291  // next interpolator
292  // Update values based on step values 25%, 50%, 75%, 100%
293  interp_count -= interp_step;
294  // 3,2,1,0 -> 1,2,3,4
295  int interp_effect = FR_SIZE - (interp_count % FR_SIZE);
296  current_energy = old_energy + (target_energy - old_energy) * interp_effect / FR_SIZE;
297  if (old_pitch > 1) {
298  current_pitch = old_pitch + (target_pitch - old_pitch) * interp_effect / FR_SIZE;
299  }
300  for (int i = 0; i <= 9; ++i)
301  current_k[i] = old_k[i] + (target_k[i] - old_k[i]) * interp_effect / FR_SIZE;
302  }
303  // calcrate digital filter
304  if (old_energy == 0) {
305  // generate silent samples here
306  current_val = 0x00;
307  } else if (old_pitch <= 1) {
308  // generate unvoiced samples here
309  current_val = random_bool() ? int(current_energy)
310  : -int(current_energy);
311  } else {
312  // generate voiced samples here
313  current_val = (pitch_count == 0) ? current_energy : 0;
314  }
315 
316  // Lattice filter here
317  int u[11];
318  u[10] = current_val;
319  for (int i = 9; i >= 0; --i) {
320  u[i] = u[i + 1] - ((current_k[i] * x[i]) / 32768);
321  }
322  for (int i = 9; i >= 1; --i) {
323  x[i] = x[i - 1] + ((current_k[i - 1] * u[i - 1]) / 32768);
324  }
325  x[0] = u[0];
326 
327  // clipping, buffering
328  bufs[0][buf_count] = Math::clip<-511, 511>(u[0]);
329  ++buf_count;
330  --sample_count;
331  ++pitch_count;
332  if (pitch_count >= current_pitch) {
333  pitch_count = 0;
334  }
335  --num;
336  }
337  // return;
338  }
339 phase_stop:
340  switch (phase) {
341  case PH_SETUP:
342  if (sample_count <= num) {
343  sample_count = 0;
344  // pin_BSY = true;
345  phase = PH_WAIT;
346  } else {
347  sample_count -= num;
348  }
349  break;
350  case PH_END:
351  if (sample_count <= num) {
352  sample_count = 0;
353  pin_BSY = false;
354  phase = PH_IDLE;
355  } else {
356  sample_count -= num;
357  }
358  }
359  // silent buffering
360  while (num > 0) {
361  bufs[0][buf_count++] = 0;
362  --num;
363  }
364 }
365 
366 float VLM5030::getAmplificationFactorImpl() const
367 {
368  return 1.0f / (1 << 9);
369 }
370 
371 // setup parameteroption when RST=H
372 void VLM5030::setupParameter(byte param)
373 {
374  // latch parameter value
375  parameter = param;
376 
377  // bit 0,1 : 4800bps / 9600bps , interporator step
378  if (param & 2) { // bit 1 = 1 , 9600bps
379  interp_step = 4; // 9600bps : no interporator
380  } else if (param & 1) { // bit1 = 0 & bit0 = 1 , 4800bps
381  interp_step = 2; // 4800bps : 2 interporator
382  } else { // bit1 = bit0 = 0 : 2400bps
383  interp_step = 1; // 2400bps : 4 interporator
384  }
385 
386  // bit 3,4,5 : speed (frame size)
387  frame_size = VLM5030_speed_table[(param >> 3) & 7];
388 
389  // bit 6,7 : low / high pitch
390  if (param & 0x80) { // bit7=1 , high pitch
391  pitch_offset = -8;
392  } else if (param & 0x40) { // bit6=1 , low pitch
393  pitch_offset = 8;
394  } else {
395  pitch_offset = 0;
396  }
397 }
398 
400 {
401  phase = PH_RESET;
402  address = 0;
403  vcu_addr_h = 0;
404  pin_BSY = false;
405 
406  old_energy = old_pitch = 0;
407  new_energy = new_pitch = 0;
408  current_energy = current_pitch = 0;
409  target_energy = target_pitch = 0;
410  memset(old_k, 0, sizeof(old_k));
411  memset(new_k, 0, sizeof(new_k));
412  memset(current_k, 0, sizeof(current_k));
413  memset(target_k, 0, sizeof(target_k));
414  interp_count = sample_count = pitch_count = 0;
415  memset(x, 0, sizeof(x));
416  // reset parameters
417  setupParameter(0x00);
418 }
419 
420 // get BSY pin level
421 bool VLM5030::getBSY(EmuTime::param time) const
422 {
423  const_cast<VLM5030*>(this)->updateStream(time);
424  return pin_BSY;
425 }
426 
427 // latch control data
429 {
430  latch_data = data;
431 }
432 
433 void VLM5030::writeControl(byte data, EmuTime::param time)
434 {
435  updateStream(time);
436  setRST((data & 0x01) != 0);
437  setVCU((data & 0x04) != 0);
438  setST ((data & 0x02) != 0);
439 }
440 
441 // set RST pin level : reset / set table address A8-A15
442 void VLM5030::setRST(bool pin)
443 {
444  if (pin_RST) {
445  if (!pin) { // H -> L : latch parameters
446  pin_RST = false;
447  setupParameter(latch_data);
448  }
449  } else {
450  if (pin) { // L -> H : reset chip
451  pin_RST = true;
452  if (pin_BSY) {
453  reset();
454  }
455  }
456  }
457 }
458 
459 // set VCU pin level : ?? unknown
460 void VLM5030::setVCU(bool pin)
461 {
462  // direct mode / indirect mode
463  pin_VCU = pin;
464 }
465 
466 // set ST pin level : set table address A0-A7 / start speech
467 void VLM5030::setST(bool pin)
468 {
469  if (pin_ST == pin) {
470  // pin level unchanged
471  return;
472  }
473  if (!pin) {
474  // H -> L
475  pin_ST = false;
476  if (pin_VCU) {
477  // direct access mode & address High
478  vcu_addr_h = (int(latch_data) << 8) + 0x01;
479  } else {
480  // check access mode
481  if (vcu_addr_h) {
482  // direct access mode
483  address = (vcu_addr_h & 0xff00) + latch_data;
484  vcu_addr_h = 0;
485  } else {
486  // indirect access mode
487  int table = (latch_data & 0xfe) + ((int(latch_data) & 1) << 8);
488  address = ((rom[(table + 0) & address_mask]) << 8) |
489  rom[(table + 1) & address_mask];
490  }
491  // reset process status
492  sample_count = frame_size;
493  interp_count = FR_SIZE;
494  // clear filter
495  // start after 3 sampling cycle
496  phase = PH_RUN;
497  }
498  } else {
499  // L -> H
500  pin_ST = true;
501  // setup speech, BSY on after 30ms?
502  phase = PH_SETUP;
503  sample_count = 1; // wait time for busy on
504  pin_BSY = true;
505  }
506 }
507 
508 
509 static XMLElement getRomConfig(const std::string& name, const std::string& romFilename)
510 {
511  XMLElement voiceROMconfig(name);
512  voiceROMconfig.addAttribute("id", "name");
513  auto& romElement = voiceROMconfig.addChild("rom");
514  romElement.addChild( // load by sha1sum
515  "sha1", "4f36d139ee4baa7d5980f765de9895570ee05f40");
516  romElement.addChild( // load by predefined filename in software rom's dir
517  "filename", strCat(FileOperations::stripExtension(romFilename), "_voice.rom"));
518  romElement.addChild( // or hardcoded filename in ditto dir
519  "filename", "keyboardmaster/voice.rom");
520  return voiceROMconfig;
521 }
522 
523 constexpr auto INPUT_RATE = unsigned(cstd::round(3579545 / 440.0));
524 
525 VLM5030::VLM5030(const std::string& name_, const std::string& desc,
526  const std::string& romFilename, const DeviceConfig& config)
527  : ResampledSoundDevice(config.getMotherBoard(), name_, desc, 1, INPUT_RATE, false)
528  , rom(name_ + " ROM", "rom", DeviceConfig(config, getRomConfig(name_, romFilename)))
529 {
530  // reset input pins
531  pin_RST = pin_ST = pin_VCU = false;
532  latch_data = 0;
533 
534  reset();
535  phase = PH_IDLE;
536 
537  address_mask = rom.getSize() - 1;
538 
539  registerSound(config);
540 }
541 
543 {
544  unregisterSound();
545 }
546 
547 template<typename Archive>
548 void VLM5030::serialize(Archive& ar, unsigned /*version*/)
549 {
550  ar.serialize("address_mask", address_mask,
551  "frame_size", frame_size,
552  "pitch_offset", pitch_offset,
553  "current_energy", current_energy,
554  "current_pitch", current_pitch,
555  "current_k", current_k,
556  "x", x,
557  "address", address,
558  "vcu_addr_h", vcu_addr_h,
559  "old_k", old_k,
560  "new_k", new_k,
561  "target_k", target_k,
562  "old_energy", old_energy,
563  "new_energy", new_energy,
564  "target_energy", target_energy,
565  "old_pitch", old_pitch,
566  "new_pitch", new_pitch,
567  "target_pitch", target_pitch,
568  "interp_step", interp_step,
569  "interp_count", interp_count,
570  "sample_count", sample_count,
571  "pitch_count", pitch_count,
572  "latch_data", latch_data,
573  "parameter", parameter,
574  "phase", phase,
575  "pin_BSY", pin_BSY,
576  "pin_ST", pin_ST,
577  "pin_VCU", pin_VCU,
578  "pin_RST", pin_RST);
579 }
580 
582 
583 } // namespace openmsx
constexpr int VLM5030_speed_table[8]
Definition: VLM5030.cc:119
constexpr int16_t K3_table[]
Definition: VLM5030.cc:171
void serialize(Archive &ar, unsigned version)
Definition: VLM5030.cc:548
constexpr int16_t K2_table[]
Definition: VLM5030.cc:165
void unregisterSound()
Unregisters this sound device with the Mixer.
Definition: SoundDevice.cc:131
void writeControl(byte data, EmuTime::param time)
set RST / VCU / ST pins
Definition: VLM5030.cc:433
int clip(int x)
Clips x to the range [LO,HI].
Definition: Math.hh:101
uint8_t byte
8 bit unsigned integer
Definition: openmsx.hh:26
constexpr int IP_SIZE_FAST
Definition: VLM5030.cc:98
XMLElement & addChild(std::string name)
Definition: XMLElement.cc:20
void writeData(byte data)
latch control data
Definition: VLM5030.cc:428
constexpr int IP_SIZE_FASTER
Definition: VLM5030.cc:99
void fill(ForwardRange &&range, const T &value)
Definition: ranges.hh:191
constexpr byte pitchtable[0x20]
Definition: VLM5030.cc:145
void updateStream(EmuTime::param time)
Definition: SoundDevice.cc:136
Thanks to enen for testing this on a real cartridge:
Definition: Autofire.cc:5
constexpr int FR_SIZE
Definition: VLM5030.cc:93
constexpr Table table
Definition: CPUCore.cc:263
bool random_bool()
Return a random boolean value.
Definition: random.hh:24
constexpr double round(double x)
Definition: cstd.hh:318
unsigned getSize() const
Definition: Rom.hh:32
uint16_t word
16 bit unsigned integer
Definition: openmsx.hh:29
constexpr int IP_SIZE_NORMAL
Definition: VLM5030.cc:97
constexpr int16_t K1_table[]
Definition: VLM5030.cc:155
VLM5030(const std::string &name, const std::string &desc, const std::string &romFilename, const DeviceConfig &config)
Definition: VLM5030.cc:525
string_view stripExtension(string_view path)
#define INSTANTIATE_SERIALIZE_METHODS(CLASS)
Definition: serialize.hh:981
constexpr auto INPUT_RATE
Definition: SCC.cc:113
constexpr int16_t K5_table[]
Definition: VLM5030.cc:175
std::string strCat(Ts &&...ts)
Definition: strCat.hh:573
void addAttribute(std::string name, std::string value)
Definition: XMLElement.cc:52
bool getBSY(EmuTime::param time) const
get BSY pin level
Definition: VLM5030.cc:421
constexpr int IP_SIZE_SLOWER
Definition: VLM5030.cc:95
constexpr int IP_SIZE_SLOW
Definition: VLM5030.cc:96
void registerSound(const DeviceConfig &config)
Registers this sound device with the Mixer.
Definition: SoundDevice.cc:90