openMSX
utils/sha1.cc
Go to the documentation of this file.
1 /*
2 Based on:
3 100% free public domain implementation of the SHA-1 algorithm
4 by Dominik Reichl <Dominik.Reichl@tiscali.de>
5 
6 Refactored in C++ style as part of openMSX
7 by Maarten ter Huurne and Wouter Vermaelen.
8 
9 === Test Vectors (from FIPS PUB 180-1) ===
10 
11 "abc"
12 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
13 
14 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
15 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
16 
17 A million repetitions of "a"
18 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
19 */
20 
21 #include "sha1.hh"
22 #include "MSXException.hh"
23 #include "endian.hh"
24 #include "likely.hh"
25 #include "ranges.hh"
26 #include <cassert>
27 #include <cstring>
28 #ifdef __SSE2__
29 #include <emmintrin.h> // SSE2
30 #endif
31 
32 namespace openmsx {
33 
34 // Rotate x bits to the left
35 [[nodiscard]] static constexpr uint32_t rol32(uint32_t value, int bits)
36 {
37  return (value << bits) | (value >> (32 - bits));
38 }
39 
41 private:
42  uint32_t data[16];
43 
44  [[nodiscard]] uint32_t next0(int i)
45  {
46  data[i] = Endian::readB32(&data[i]);
47  return data[i];
48  }
49  [[nodiscard]] uint32_t next(int i)
50  {
51  return data[i & 15] = rol32(
52  data[(i + 13) & 15] ^ data[(i + 8) & 15] ^
53  data[(i + 2) & 15] ^ data[ i & 15]
54  , 1);
55  }
56 
57 public:
58  explicit WorkspaceBlock(const uint8_t buffer[64]);
59 
60  // SHA-1 rounds
61  void r0(uint32_t v, uint32_t& w, uint32_t x, uint32_t y, uint32_t& z, int i)
62  {
63  z += ((w & (x ^ y)) ^ y) + next0(i) + 0x5A827999 + rol32(v, 5);
64  w = rol32(w, 30);
65  }
66  void r1(uint32_t v, uint32_t& w, uint32_t x, uint32_t y, uint32_t& z, int i)
67  {
68  z += ((w & (x ^ y)) ^ y) + next(i) + 0x5A827999 + rol32(v, 5);
69  w = rol32(w, 30);
70  }
71  void r2(uint32_t v, uint32_t& w, uint32_t x, uint32_t y, uint32_t& z, int i)
72  {
73  z += (w ^ x ^ y) + next(i) + 0x6ED9EBA1 + rol32(v, 5);
74  w = rol32(w, 30);
75  }
76  void r3(uint32_t v, uint32_t& w, uint32_t x, uint32_t y, uint32_t& z, int i)
77  {
78  z += (((w | x) & y) | (w & x)) + next(i) + 0x8F1BBCDC + rol32(v, 5);
79  w = rol32(w, 30);
80  }
81  void r4(uint32_t v, uint32_t& w, uint32_t x, uint32_t y, uint32_t& z, int i)
82  {
83  z += (w ^ x ^ y) + next(i) + 0xCA62C1D6 + rol32(v, 5);
84  w = rol32(w, 30);
85  }
86 };
87 
88 WorkspaceBlock::WorkspaceBlock(const uint8_t buffer[64])
89 {
90  memcpy(data, buffer, sizeof(data));
91 }
92 
93 
94 // class Sha1Sum
95 
97 {
98  clear();
99 }
100 
101 Sha1Sum::Sha1Sum(std::string_view hex)
102 {
103  if (hex.size() != 40) {
104  throw MSXException("Invalid sha1, should be exactly 40 digits long: ", hex);
105  }
106  parse40(hex.data());
107 }
108 
109 #ifdef __SSE2__
110 // emulate some missing unsigned-8-bit comparison functions
111 [[nodiscard]] static inline __m128i _mm_cmpge_epu8(__m128i a, __m128i b)
112 {
113  return _mm_cmpeq_epi8(_mm_max_epu8(a, b), a);
114 }
115 
116 [[nodiscard]] static inline __m128i _mm_cmple_epu8(__m128i a, __m128i b)
117 {
118  return _mm_cmpge_epu8(b, a);
119 }
120 
121 // load 64-bit (possibly unaligned) and swap bytes
122 [[nodiscard]] static inline uint64_t loadSwap64(const char* s)
123 {
124  return Endian::read_UA_B64(s);
125 }
126 
127 #else
128 
129 [[nodiscard]] static /*constexpr*/ unsigned hex(char x, const char* str)
130 {
131  if (('0' <= x) && (x <= '9')) return x - '0';
132  if (('a' <= x) && (x <= 'f')) return x - 'a' + 10;
133  if (('A' <= x) && (x <= 'F')) return x - 'A' + 10;
134  throw MSXException("Invalid sha1, digits should be 0-9, a-f: ",
135  std::string_view(str, 40));
136 }
137 #endif
138 
139 void Sha1Sum::parse40(const char* str)
140 {
141 #ifdef __SSE2__
142  // SSE2 version
143 
144  // load characters
145  __m128i s0 = _mm_set_epi64x(loadSwap64(str + 8), loadSwap64(str + 0));
146  __m128i s1 = _mm_set_epi64x(loadSwap64(str + 24), loadSwap64(str + 16));
147  __m128i s2 = _mm_set_epi64x('0' * 0x0101010101010101, loadSwap64(str + 32));
148 
149  // chars - '0'
150  __m128i cc0 = _mm_set1_epi8(char(-'0'));
151  __m128i s0_0 = _mm_add_epi8(s0, cc0);
152  __m128i s1_0 = _mm_add_epi8(s1, cc0);
153  __m128i s2_0 = _mm_add_epi8(s2, cc0);
154 
155  // (chars | 32) - 'a' (convert uppercase 'A'-'F' into lower case)
156  __m128i c32 = _mm_set1_epi8(32);
157  __m128i cca = _mm_set1_epi8(char(-'a'));
158  __m128i s0_a = _mm_add_epi8(_mm_or_si128(s0, c32), cca);
159  __m128i s1_a = _mm_add_epi8(_mm_or_si128(s1, c32), cca);
160  __m128i s2_a = _mm_add_epi8(_mm_or_si128(s2, c32), cca);
161 
162  // was in range '0'-'9'?
163  __m128i c9 = _mm_set1_epi8(9);
164  __m128i c0_0 = _mm_cmple_epu8(s0_0, c9);
165  __m128i c1_0 = _mm_cmple_epu8(s1_0, c9);
166  __m128i c2_0 = _mm_cmple_epu8(s2_0, c9);
167 
168  // was in range 'a'-'f'?
169  __m128i c5 = _mm_set1_epi8(5);
170  __m128i c0_a = _mm_cmple_epu8(s0_a, c5);
171  __m128i c1_a = _mm_cmple_epu8(s1_a, c5);
172  __m128i c2_a = _mm_cmple_epu8(s2_a, c5);
173 
174  // either '0'-'9' or 'a'-f' must be in range for all chars
175  __m128i ok0 = _mm_or_si128(c0_0, c0_a);
176  __m128i ok1 = _mm_or_si128(c1_0, c1_a);
177  __m128i ok2 = _mm_or_si128(c2_0, c2_a);
178  __m128i ok = _mm_and_si128(_mm_and_si128(ok0, ok1), ok2);
179  if (unlikely(_mm_movemask_epi8(ok) != 0xffff)) {
180  throw MSXException("Invalid sha1, digits should be 0-9, a-f: ",
181  std::string_view(str, 40));
182  }
183 
184  // '0'-'9' to numeric value (or zero)
185  __m128i d0_0 = _mm_and_si128(s0_0, c0_0);
186  __m128i d1_0 = _mm_and_si128(s1_0, c1_0);
187  __m128i d2_0 = _mm_and_si128(s2_0, c2_0);
188 
189  // 'a'-'f' to numeric value (or zero)
190  __m128i c10 = _mm_set1_epi8(10);
191  __m128i d0_a = _mm_and_si128(_mm_add_epi8(s0_a, c10), c0_a);
192  __m128i d1_a = _mm_and_si128(_mm_add_epi8(s1_a, c10), c1_a);
193  __m128i d2_a = _mm_and_si128(_mm_add_epi8(s2_a, c10), c2_a);
194 
195  // combine 0-9 / 10-15 into 0-15
196  __m128i d0 = _mm_or_si128(d0_0, d0_a);
197  __m128i d1 = _mm_or_si128(d1_0, d1_a);
198  __m128i d2 = _mm_or_si128(d2_0, d2_a);
199 
200  // compact bytes to nibbles
201  __m128i c00ff = _mm_set1_epi16(0x00ff);
202  __m128i e0 = _mm_and_si128(_mm_or_si128(d0, _mm_srli_epi16(d0, 4)), c00ff);
203  __m128i e1 = _mm_and_si128(_mm_or_si128(d1, _mm_srli_epi16(d1, 4)), c00ff);
204  __m128i e2 = _mm_and_si128(_mm_or_si128(d2, _mm_srli_epi16(d2, 4)), c00ff);
205  __m128i f0 = _mm_packus_epi16(e0, e0);
206  __m128i f1 = _mm_packus_epi16(e1, e1);
207  __m128i f2 = _mm_packus_epi16(e2, e2);
208 
209  // store result
210  _mm_storeu_si128(reinterpret_cast<__m128i*>(a), _mm_unpacklo_epi64(f0, f1));
211  a[4] = _mm_cvtsi128_si32(f2);
212 #else
213  // equivalent c++ version
214  const char* p = str;
215  for (auto& ai : a) {
216  unsigned t = 0;
217  repeat(8, [&] {
218  t <<= 4;
219  t |= hex(*p++, str);
220  });
221  ai = t;
222  }
223 #endif
224 }
225 
226 [[nodiscard]] static constexpr char digit(unsigned x)
227 {
228  return (x < 10) ? (x + '0') : (x - 10 + 'a');
229 }
230 std::string Sha1Sum::toString() const
231 {
232  char buf[40];
233  char* p = buf;
234  for (const auto& ai : a) {
235  for (int j = 28; j >= 0; j -= 4) {
236  *p++ = digit((ai >> j) & 0xf);
237  }
238  }
239  return std::string(buf, 40);
240 }
241 
242 bool Sha1Sum::empty() const
243 {
244  return ranges::all_of(a, [](auto& e) { return e == 0; });
245 }
247 {
248  ranges::fill(a, 0);
249 }
250 
251 
252 // class SHA1
253 
255 {
256  // SHA1 initialization constants
257  m_state.a[0] = 0x67452301;
258  m_state.a[1] = 0xEFCDAB89;
259  m_state.a[2] = 0x98BADCFE;
260  m_state.a[3] = 0x10325476;
261  m_state.a[4] = 0xC3D2E1F0;
262 
263  m_count = 0;
264  m_finalized = false;
265 }
266 
267 void SHA1::transform(const uint8_t buffer[64])
268 {
269  WorkspaceBlock block(buffer);
270 
271  // Copy m_state[] to working vars
272  uint32_t a = m_state.a[0];
273  uint32_t b = m_state.a[1];
274  uint32_t c = m_state.a[2];
275  uint32_t d = m_state.a[3];
276  uint32_t e = m_state.a[4];
277 
278  // 4 rounds of 20 operations each. Loop unrolled
279  block.r0(a,b,c,d,e, 0); block.r0(e,a,b,c,d, 1); block.r0(d,e,a,b,c, 2);
280  block.r0(c,d,e,a,b, 3); block.r0(b,c,d,e,a, 4); block.r0(a,b,c,d,e, 5);
281  block.r0(e,a,b,c,d, 6); block.r0(d,e,a,b,c, 7); block.r0(c,d,e,a,b, 8);
282  block.r0(b,c,d,e,a, 9); block.r0(a,b,c,d,e,10); block.r0(e,a,b,c,d,11);
283  block.r0(d,e,a,b,c,12); block.r0(c,d,e,a,b,13); block.r0(b,c,d,e,a,14);
284  block.r0(a,b,c,d,e,15); block.r1(e,a,b,c,d,16); block.r1(d,e,a,b,c,17);
285  block.r1(c,d,e,a,b,18); block.r1(b,c,d,e,a,19); block.r2(a,b,c,d,e,20);
286  block.r2(e,a,b,c,d,21); block.r2(d,e,a,b,c,22); block.r2(c,d,e,a,b,23);
287  block.r2(b,c,d,e,a,24); block.r2(a,b,c,d,e,25); block.r2(e,a,b,c,d,26);
288  block.r2(d,e,a,b,c,27); block.r2(c,d,e,a,b,28); block.r2(b,c,d,e,a,29);
289  block.r2(a,b,c,d,e,30); block.r2(e,a,b,c,d,31); block.r2(d,e,a,b,c,32);
290  block.r2(c,d,e,a,b,33); block.r2(b,c,d,e,a,34); block.r2(a,b,c,d,e,35);
291  block.r2(e,a,b,c,d,36); block.r2(d,e,a,b,c,37); block.r2(c,d,e,a,b,38);
292  block.r2(b,c,d,e,a,39); block.r3(a,b,c,d,e,40); block.r3(e,a,b,c,d,41);
293  block.r3(d,e,a,b,c,42); block.r3(c,d,e,a,b,43); block.r3(b,c,d,e,a,44);
294  block.r3(a,b,c,d,e,45); block.r3(e,a,b,c,d,46); block.r3(d,e,a,b,c,47);
295  block.r3(c,d,e,a,b,48); block.r3(b,c,d,e,a,49); block.r3(a,b,c,d,e,50);
296  block.r3(e,a,b,c,d,51); block.r3(d,e,a,b,c,52); block.r3(c,d,e,a,b,53);
297  block.r3(b,c,d,e,a,54); block.r3(a,b,c,d,e,55); block.r3(e,a,b,c,d,56);
298  block.r3(d,e,a,b,c,57); block.r3(c,d,e,a,b,58); block.r3(b,c,d,e,a,59);
299  block.r4(a,b,c,d,e,60); block.r4(e,a,b,c,d,61); block.r4(d,e,a,b,c,62);
300  block.r4(c,d,e,a,b,63); block.r4(b,c,d,e,a,64); block.r4(a,b,c,d,e,65);
301  block.r4(e,a,b,c,d,66); block.r4(d,e,a,b,c,67); block.r4(c,d,e,a,b,68);
302  block.r4(b,c,d,e,a,69); block.r4(a,b,c,d,e,70); block.r4(e,a,b,c,d,71);
303  block.r4(d,e,a,b,c,72); block.r4(c,d,e,a,b,73); block.r4(b,c,d,e,a,74);
304  block.r4(a,b,c,d,e,75); block.r4(e,a,b,c,d,76); block.r4(d,e,a,b,c,77);
305  block.r4(c,d,e,a,b,78); block.r4(b,c,d,e,a,79);
306 
307  // Add the working vars back into m_state[]
308  m_state.a[0] += a;
309  m_state.a[1] += b;
310  m_state.a[2] += c;
311  m_state.a[3] += d;
312  m_state.a[4] += e;
313 }
314 
315 // Use this function to hash in binary data and strings
317 {
318  const uint8_t* data = data_.data();
319  size_t len = data_.size();
320 
321  assert(!m_finalized);
322  uint32_t j = m_count & 63;
323 
324  m_count += len;
325 
326  size_t i;
327  if ((j + len) > 63) {
328  memcpy(&m_buffer[j], data, (i = 64 - j));
329  transform(m_buffer);
330  for (; i + 63 < len; i += 64) {
331  transform(&data[i]);
332  }
333  j = 0;
334  } else {
335  i = 0;
336  }
337  memcpy(&m_buffer[j], &data[i], len - i);
338 }
339 
340 void SHA1::finalize()
341 {
342  assert(!m_finalized);
343 
344  uint32_t j = m_count & 63;
345  m_buffer[j++] = 0x80;
346  if (j > 56) {
347  memset(&m_buffer[j], 0, 64 - j);
348  transform(m_buffer);
349  j = 0;
350  }
351  memset(&m_buffer[j], 0, 56 - j);
352  Endian::B64 finalCount = 8 * m_count; // convert number of bytes to bits
353  memcpy(&m_buffer[56], &finalCount, 8);
354  transform(m_buffer);
355 
356  m_finalized = true;
357 }
358 
360 {
361  if (!m_finalized) finalize();
362  return m_state;
363 }
364 
366 {
367  SHA1 sha1;
368  sha1.update(data);
369  return sha1.digest();
370 }
371 
372 } // namespace openmsx
TclObject t
Helper class to perform a sha1 calculation.
Definition: sha1.hh:81
Sha1Sum digest()
Get the final hash.
Definition: utils/sha1.cc:359
void update(span< const uint8_t > data)
Incrementally calculate the hash value.
Definition: utils/sha1.cc:316
static Sha1Sum calc(span< const uint8_t > data)
Easier to use interface, if you can pass all data in one go.
Definition: utils/sha1.cc:365
This class represents the result of a sha1 calculation (a 160-bit value).
Definition: sha1.hh:22
bool empty() const
Definition: utils/sha1.cc:242
void parse40(const char *str)
Parse from a 40-character long buffer.
Definition: utils/sha1.cc:139
std::string toString() const
Definition: utils/sha1.cc:230
void r1(uint32_t v, uint32_t &w, uint32_t x, uint32_t y, uint32_t &z, int i)
Definition: utils/sha1.cc:66
void r2(uint32_t v, uint32_t &w, uint32_t x, uint32_t y, uint32_t &z, int i)
Definition: utils/sha1.cc:71
WorkspaceBlock(const uint8_t buffer[64])
Definition: utils/sha1.cc:88
void r4(uint32_t v, uint32_t &w, uint32_t x, uint32_t y, uint32_t &z, int i)
Definition: utils/sha1.cc:81
void r0(uint32_t v, uint32_t &w, uint32_t x, uint32_t y, uint32_t &z, int i)
Definition: utils/sha1.cc:61
void r3(uint32_t v, uint32_t &w, uint32_t x, uint32_t y, uint32_t &z, int i)
Definition: utils/sha1.cc:76
constexpr pointer data() const noexcept
Definition: span.hh:323
constexpr index_type size() const noexcept
Definition: span.hh:296
#define unlikely(x)
Definition: likely.hh:15
ALWAYS_INLINE uint64_t read_UA_B64(const void *p)
Definition: endian.hh:239
uint32_t readB32(const void *p)
Definition: endian.hh:157
This file implemented 3 utility functions:
Definition: Autofire.cc:9
constexpr KeyMatrixPosition x
Keyboard bindings.
Definition: Keyboard.cc:118
void fill(ForwardRange &&range, const T &value)
Definition: ranges.hh:227
bool all_of(InputRange &&range, UnaryPredicate pred)
Definition: ranges.hh:149
constexpr void repeat(T n, Op op)
Repeat the given operation 'op' 'n' times.
Definition: xrange.hh:170